Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602733

RESUMO

Chemotherapy is a widely used treatment for a variety of solid and hematological malignancies. Despite its success in improving the survival rate of cancer patients, chemotherapy causes significant toxicity to multiple organs, including the skeleton, but the underlying mechanisms have yet to be elucidated. Using tumor-free mouse models, which are commonly used to assess direct off-target effects of anti-neoplastic therapies, we found that doxorubicin caused massive bone loss in wild-type mice, a phenotype associated with increased number of osteoclasts, leukopenia, elevated serum levels of danger-associated molecular patterns (DAMPs; e.g. cell-free DNA and ATP) and cytokines (e.g. IL-1ß and IL-18). Accordingly, doxorubicin activated the absent in melanoma (AIM2) and NLR family pyrin domain containing 3 (NLRP3) inflammasomes in macrophages and neutrophils, causing inflammatory cell death pyroptosis and NETosis, which correlated with its leukopenic effects. Moreover, the effects of this chemotherapeutic agent on cytokine secretion, cell demise, and bone loss were attenuated to various extent in conditions of AIM2 and/or NLRP3 insufficiency. Thus, we found that inflammasomes are key players in bone loss caused by doxorubicin, a finding that may inspire the development of a tailored adjuvant therapy that preserves the quality of this tissue in patients treated with this class of drugs.


Assuntos
Inflamassomos , Melanoma , Humanos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Alarminas , Doxorrubicina/efeitos adversos , Inflamação
2.
Proc Natl Acad Sci U S A ; 121(7): e2310264121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319963

RESUMO

Epigenetic regulation plays a crucial role in the pathogenesis of autoimmune diseases such as inflammatory arthritis. DNA hypomethylating agents, such as decitabine (DAC), have been shown to dampen inflammation and restore immune homeostasis. In the present study, we demonstrate that DAC elicits potent anti-inflammatory effects and attenuates disease symptoms in several animal models of arthritis. Transcriptomic and epigenomic profiling show that DAC-mediated hypomethylation regulates a wide range of cell types in arthritis, altering the differentiation trajectories of anti-inflammatory macrophage populations, regulatory T cells, and tissue-protective synovial fibroblasts (SFs). Mechanistically, DAC-mediated demethylation of intragenic 5'-Cytosine phosphate Guanine-3' (CpG) islands of the transcription factor Irf8 (interferon regulatory factor 8) induced its re-expression and promoted its repressor activity. As a result, DAC restored joint homeostasis by resetting the transcriptomic signature of negative regulators of inflammation in synovial macrophages (MerTK, Trem2, and Cx3cr1), TREGs (Foxp3), and SFs (Pdpn and Fapα). In conclusion, we found that Irf8 is necessary for the inhibitory effect of DAC in murine arthritis and that direct expression of Irf8 is sufficient to significantly mitigate arthritis.


Assuntos
Artrite , Azacitidina , Camundongos , Animais , Decitabina/farmacologia , Azacitidina/farmacologia , Epigênese Genética , Metilação de DNA , Fatores Reguladores de Interferon/metabolismo , Inflamação/genética , Artrite/genética , Anti-Inflamatórios , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética
3.
J Clin Invest ; 134(3)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051594

RESUMO

Challenging skeletal repairs are frequently seen in patients experiencing systemic inflammation. To tackle the complexity and heterogeneity of the skeletal repair process, we performed single-cell RNA sequencing and revealed that progenitor cells were one of the major lineages responsive to elevated inflammation and this response adversely affected progenitor differentiation by upregulation of Rbpjk in fracture nonunion. We then validated the interplay between inflammation (via constitutive activation of Ikk2, Ikk2ca) and Rbpjk specifically in progenitors by using genetic animal models. Focusing on epigenetic regulation, we identified Rbpjk as a direct target of Dnmt3b. Mechanistically, inflammation decreased Dnmt3b expression in progenitor cells, consequently leading to Rbpjk upregulation via hypomethylation within its promoter region. We also showed that Dnmt3b loss-of-function mice phenotypically recapitulated the fracture repair defects observed in Ikk2ca-transgenic mice, whereas Dnmt3b-transgenic mice alleviated fracture repair defects induced by Ikk2ca. Moreover, Rbpjk ablation restored fracture repair in both Ikk2ca mice and Dnmt3b loss-of-function mice. Altogether, this work elucidates a common mechanism involving a NF-κB/Dnmt3b/Rbpjk axis within the context of inflamed bone regeneration. Building on this mechanistic insight, we applied local treatment with epigenetically modified progenitor cells in a previously established mouse model of inflammation-mediated fracture nonunion and showed a functional restoration of bone regeneration under inflammatory conditions through an increase in progenitor differentiation potential.


Assuntos
Metilação de DNA , Fraturas Ósseas , Animais , Humanos , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , Epigênese Genética , Fraturas Ósseas/genética , Inflamação/genética , Camundongos Transgênicos
4.
J Am Heart Assoc ; 12(14): e029975, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37449587

RESUMO

Background Recent evidence implicates inflammation as a key driver in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage (SAH). Inducible nitric oxide synthase (iNOS) is one of the known major mediators of inflammation. We previously showed that an inhalational anesthetic, isoflurane, provides strong protection against delayed cerebral ischemia after SAH. Our current study aims to define the role of iNOS in isoflurane conditioning-induced protection against delayed cerebral ischemia in a mouse model of SAH. Methods and Results The experiments used 10- to 14-week-old male wild-type (C57BL/6) and iNOS global knockout mice. Anesthetic conditioning was initiated 1 hour after SAH with isoflurane 2% for 1 hour. Isoflurane-induced changes in iNOS expression were measured. N-(3-(aminomethyl) benzyl) acetamidine, a highly selective iNOS inhibitor, was injected intraperitoneally immediately after SAH and then daily. Vasospasm, microvessel thrombosis, and neurological assessment was performed. Data were analyzed by 1-way ANOVA and 2-way repeated measures ANOVA followed by Student Newman Keuls comparison test. Statistical significance was set at P<0.05. Isoflurane conditioning downregulated iNOS expression in naïve and SAH mice. N-(3-(aminomethyl) benzyl) acetamidine attenuated large artery vasospasm and microvessel thrombosis and improved neurological deficits in wild-type animals. iNOS knockout mice were significantly resistant to vasospasm, microvessel thrombosis, and neurological deficits induced by SAH. Combining isoflurane with N-(3-(aminomethyl) benzyl) acetamidine did not offer extra protection, nor did treating iNOS knockout mice with isoflurane. Conclusions Isoflurane conditioning-induced delayed cerebral ischemia protection appears to be mediated by downregulating iNOS. iNOS is a potential therapeutic target to improve outcomes after SAH.


Assuntos
Isquemia Encefálica , Isoflurano , Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Camundongos , Masculino , Animais , Óxido Nítrico Sintase Tipo II/metabolismo , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/metabolismo , Isoflurano/farmacologia , Camundongos Endogâmicos C57BL , Isquemia Encefálica/prevenção & controle , Infarto Cerebral , Camundongos Knockout , Vasoespasmo Intracraniano/prevenção & controle
5.
Biomedicines ; 11(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37189781

RESUMO

Delayed cerebral ischemia (DCI) is the largest treatable cause of poor outcome after aneurysmal subarachnoid hemorrhage (SAH). Nuclear Factor Kappa-light-chain-enhancer of Activated B cells (NF-kB), a transcription factor known to function as a pivotal mediator of inflammation, is upregulated in SAH and is pathologically associated with vasospasm. We previously showed that a brief exposure to isoflurane, an inhalational anesthetic, provided multifaceted protection against DCI after SAH. The aim of our current study is to investigate the role of NF-kB in isoflurane-conditioning-induced neurovascular protection against SAH-induced DCI. Twelve-week-old wild type male mice (C57BL/6) were divided into five groups: sham, SAH, SAH + Pyrrolidine dithiocarbamate (PDTC, a selective NF-kB inhibitor), SAH + isoflurane conditioning, and SAH + PDTC with isoflurane conditioning. Experimental SAH was performed via endovascular perforation. Anesthetic conditioning was performed with isoflurane 2% for 1 h, 1 h after SAH. Three doses of PDTC (100 mg/kg) were injected intraperitoneally. NF-kB and microglial activation and the cellular source of NF-kB after SAH were assessed by immunofluorescence staining. Vasospasm, microvessel thrombosis, and neuroscore were assessed. NF-kB was activated after SAH; it was attenuated by isoflurane conditioning. Microglia was activated and found to be a major source of NF-kB expression after SAH. Isoflurane conditioning attenuated microglial activation and NF-kB expression in microglia after SAH. Isoflurane conditioning and PDTC individually attenuated large artery vasospasm and microvessel thrombosis, leading to improved neurological deficits after SAH. The addition of isoflurane to the PDTC group did not provide any additional DCI protection. These data indicate isoflurane-conditioning-induced DCI protection after SAH is mediated, at least in part, via downregulating the NF-kB pathway.

6.
Proc Natl Acad Sci U S A ; 120(15): e2210409120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37023130

RESUMO

Stimulator of interferon genes (STING) is a key mediator of type-I interferon (IFN-I) signaling in response to a variety of stimuli, but the contribution of STING to homeostatic processes is not fully characterized. Previous studies showed that ligand activation of STING limits osteoclast differentiation in vitro through the induction of IFNß and IFN-I interferon-stimulated genes (ISGs). In a disease model (SAVI) driven by the V154M gain-of-function mutation in STING, fewer osteoclasts form from SAVI precursors in response to receptor activator of NF-kappaB ligand (RANKL) in an IFN-I-dependent manner. Due to the described role of STING-mediated regulation of osteoclastogenesis in activation settings, we sought to determine whether basal STING signaling contributes to bone homeostasis, an unexplored area. Using whole-body and myeloid-specific deficiency, we show that STING signaling prevents trabecular bone loss in mice over time and that myeloid-restricted STING activity is sufficient for this effect. STING-deficient osteoclast precursors differentiate with greater efficiency than wild types. RNA sequencing of wild-type and STING-deficient osteoclast precursor cells and differentiating osteoclasts reveals unique clusters of ISGs including a previously undescribed ISG set expressed in RANKL naïve precursors (tonic expression) and down-regulated during differentiation. We identify a 50 gene tonic ISG signature that is STING dependent and shapes osteoclast differentiation. From this list, we identify interferon-stimulated gene 15 (ISG15) as a tonic STING-regulated ISG that limits osteoclast formation. Thus, STING is an important upstream regulator of tonic IFN-I signatures shaping the commitment to osteoclast fates, providing evidence for a nuanced and unique role for this pathway in bone homeostasis.


Assuntos
Osteoclastos , Transdução de Sinais , Animais , Camundongos , Diferenciação Celular/fisiologia , Interferons/metabolismo , Ligantes , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo
7.
Elife ; 112022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36508247

RESUMO

The nuclear factor-κB (NFκB) pathway is a major thoroughfare for skeletal muscle atrophy and is driven by diverse stimuli. Targeted inhibition of NFκB through its canonical mediator IKKß effectively mitigates loss of muscle mass across many conditions, from denervation to unloading to cancer. In this study, we used gain- and loss-of-function mouse models to examine the role of NFκB in muscle atrophy following rotator cuff tenotomy - a model of chronic rotator cuff tear. IKKß was knocked down or constitutively activated in muscle-specific inducible transgenic mice to elicit a twofold gain or loss of NFκB signaling. Surprisingly, neither knockdown of IKKß nor overexpression of caIKKß significantly altered the loss of muscle mass following tenotomy. This finding was consistent across measures of morphological adaptation (fiber cross-sectional area, fiber length, fiber number), tissue pathology (fibrosis and fatty infiltration), and intracellular signaling (ubiquitin-proteasome, autophagy). Intriguingly, late-stage tenotomy-induced atrophy was exacerbated in male mice compared with female mice. This sex specificity was driven by ongoing decreases in fiber cross-sectional area, which paralleled the accumulation of large autophagic vesicles in male, but not female muscle. These findings suggest that tenotomy-induced atrophy is not dependent on NFκB and instead may be regulated by autophagy in a sex-specific manner.


Muscle atrophy ­ the gradual loss of muscle mass ­ follows injuries to our muscles, tendons, or joints. During atrophy, muscles shrink and become weaker, which can interfere with everyday activities and, ultimately, decrease quality of life. Rotator cuff tears are a common example of such injuries. A rotator cuff is group of four muscles that come together as tendons to form a cuff that normally stabilises our shoulders and allows us to lift and move our arms over our heads. Rotator cuff tears can result from an injury or may be caused by ageing-related wear and tear of the tendon. A signalling protein, called NFκB, is thought to be involved in muscle atrophy. When the NFκB signal is switched on, it interacts with genes that are thought to speed up the loss of muscle mass. However, NFκB's precise role in atrophy and recovery after muscle injury is still poorly understood, particularly following injuries where a tendon is cut or torn. Meyer et al. therefore set out to determine whether or not NFκB played a role in the muscle atrophy following rotator cuff tears. Meyer et al. used genetically engineered mice in which NFκB's signal could be turned off at the time of rotator cuff injury, and specifically in muscle cells (but not other parts of the body). The experiments revealed that stopping NFκß signalling in these mice did not reduce muscle atrophy after a rotator cuff injury: the levels of atrophy, muscle performance, and muscle composition were the same regardless of whether the NFκß signal was active. The sex of the mice did, however, affect muscle atrophy, specifically the way in which they lost muscle mass. In male mice, the size of muscle cells decreased, while in female mice, the number of muscle cells decreased. Muscle cells in male mice (but not in females) also accumulated abnormally high amounts of protein, which is an indication of a mechanism of muscle breakdown called autophagy. These results shed new light on the way that we lose muscle mass after injury, and how that could vary depending on the individual. Meyer et al. hope that this study will help guide the development of new, more effective treatments for muscle atrophy, and ultimately contribute to therapies tailored to the characteristics of the patient and the type of injury.


Assuntos
NF-kappa B , Tenotomia , Feminino , Masculino , Camundongos , Animais , Quinase I-kappa B , Manguito Rotador/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Camundongos Transgênicos , Músculo Esquelético/patologia
8.
J Transl Autoimmun ; 5: 100162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36097634

RESUMO

Gasdermin D (GSDMD) and gasdermin E (GSDME) perpetuate inflammation by mediating the release of cytokines such as interleukin-1ß (IL-1ß) and IL-18. However, not only are the actions of GSDMD in colitis still controversial, but its interplay with GSDME in the pathogenesis of this disease has not been investigated. We sought to fill these knowledge gaps using the dextran sodium sulfate (DSS) experimental mouse colitis model. DSS ingestion by wild-type mice caused body weight loss as the result of severe gut inflammation, outcomes that were significantly attenuated in Gsdmd -/- or Gsdme -/- mice and nearly fully prevented in Gsdmd -/- ;Gsdme -/- animals. To assess the translational implications of these findings, we tested the efficacy of the active metabolite of US Food and Drug Administration (FDA)-approved disulfiram, which inhibits GSDMD and GSDME function. The severe DSS-induced gut toxicity was significantly decreased in mice treated with the inhibitor. Collectively, our findings indicate that disruption of the function of both GSDMD and GSDME is necessary to achieve maximal therapeutic effect in colitis.

9.
Elife ; 112022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35916374

RESUMO

Osteoarthritis is the most common joint disease in the world with significant societal consequences but lacks effective disease-modifying interventions. The pathophysiology consists of a prominent inflammatory component that can be targeted to prevent cartilage degradation and structural defects. Intracellular metabolism has emerged as a culprit of the inflammatory response in chondrocytes, with both processes co-regulating each other. The role of glutamine metabolism in chondrocytes, especially in the context of inflammation, lacks a thorough understanding and is the focus of this work. We display that mouse chondrocytes utilize glutamine for energy production and anabolic processes. Furthermore, we show that glutamine deprivation itself causes metabolic reprogramming and decreases the inflammatory response of chondrocytes through inhibition of NF-κB activity. Finally, we display that glutamine deprivation promotes autophagy and that ammonia is an inhibitor of autophagy. Overall, we identify a relationship between glutamine metabolism and inflammatory signaling and display the need for increased study of chondrocyte metabolic systems.


Assuntos
Condrócitos , Osteoartrite , Animais , Cartilagem , Condrócitos/metabolismo , Glutamina/metabolismo , Camundongos , NF-kappa B/metabolismo , Osteoartrite/metabolismo
10.
Elife ; 112022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244027

RESUMO

Amino-terminal fragments from proteolytically cleaved gasdermins (GSDMs) form plasma membrane pores that enable the secretion of interleukin-1ß (IL-1ß) and IL-18. Excessive GSDM-mediated pore formation can compromise the integrity of the plasma membrane thereby causing the lytic inflammatory cell death, pyroptosis. We found that GSDMD and GSDME were the only GSDMs that were readily expressed in bone microenvironment. Therefore, we tested the hypothesis that GSDMD and GSDME are implicated in fracture healing owing to their role in the obligatory inflammatory response following injury. We found that bone callus volume and biomechanical properties of injured bones were significantly reduced in mice lacking either GSDM compared with wild-type (WT) mice, indicating that fracture healing was compromised in mutant mice. However, compound loss of GSDMD and GSDME did not exacerbate the outcomes, suggesting shared actions of both GSDMs in fracture healing. Mechanistically, bone injury induced IL-1ß and IL-18 secretion in vivo, a response that was mimicked in vitro by bone debris and ATP, which function as inflammatory danger signals. Importantly, the secretion of these cytokines was attenuated in conditions of GSDMD deficiency. Finally, deletion of IL-1 receptor reproduced the phenotype of Gsdmd or Gsdme deficient mice, implying that inflammatory responses induced by the GSDM-IL-1 axis promote bone healing after fracture.


Assuntos
Inflamassomos , Interleucina-18 , Animais , Consolidação da Fratura , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Proteínas de Ligação a Fosfato/genética , Piroptose/genética
11.
Bone Res ; 10(1): 12, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35145063

RESUMO

Osteoarthritis is a joint disease characterized by a poorly-defined inflammatory response that does not encompass a massive immune cell infiltration yet contributes to cartilage degradation and loss of joint mobility, suggesting a chondrocyte intrinsic inflammatory response. Using primary chondrocytes from joints of osteoarthritic mice and patients, we first show that these cells express ample pro-inflammatory markers and RANKL in an NF-κB dependent manner. The inflammatory phenotype of chondrocytes was recapitulated by exposure of chondrocytes to IL-1ß and bone particles, which were used to model bone matrix breakdown products revealed to be present in synovial fluid of OA patients, albeit their role was not defined. We further show that bone particles and IL-1ß can promote senescent and apoptotic changes in primary chondrocytes due to oxidative stress from various cellular sources such as the mitochondria. Finally, we provide evidence that inflammation, oxidative stress and senescence converge upon IκB-ζ, the principal mediator downstream of NF-κB, which regulates expression of RANKL, inflammatory, catabolic, and SASP genes. Overall, this work highlights the capacity and mechanisms by which inflammatory cues, primarily joint degradation products, i.e., bone matrix particles in concert with IL-1ß in the joint microenvironment, program chondrocytes into an "inflammatory phenotype" which inflects local tissue damage.

12.
Arthritis Res Ther ; 23(1): 286, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784954

RESUMO

BACKGROUND: Gasdermin D (GSDMD) is cleaved by several proteases including by caspase-1, a component of intracellular protein complexes called inflammasomes. Caspase-1 also converts pro-interleukin-1ß (pro-IL-1ß) and pro-IL-18 into bioactive IL-1ß and IL-18, respectively. GSDMD amino-terminal fragments form plasma membrane pores, which mediate the secretion of IL-1ß and IL-18 and cause the inflammatory form of cell death pyroptosis. Here, we tested the hypothesis that GSDMD contributes to joint degeneration in the K/BxN serum transfer-induced arthritis (STIA) model in which autoantibodies against glucose-6-phosphate isomerase promote the formation of pathogenic immune complexes on the surface of myeloid cells, which highly express the inflammasomes. The unexpected outcomes with the STIA model prompted us to determine the role of GSDMD in the post-traumatic osteoarthritis (PTOA) model caused by meniscus ligamentous injury (MLI) based on the hypothesis that this pore-forming protein is activated by signals released from damaged joint tissues. METHODS: Gsdmd +/+ and Gsdmd-/- mice were injected with K/BxN mouse serum or subjected to MLI to cause STIA or PTOA, respectively. Paw and ankle swelling and DXA scanning were used to assess the outcomes in the STIA model whereas histopathology and micro-computed tomography (µCT) were utilized to monitor joints in the PTOA model. Murine and human joint tissues were also examined for GSDMD, IL-1ß, and IL-18 expression by qPCR, immunohistochemistry, or immunoblotting. RESULTS: GSDMD levels were higher in serum-inoculated paws compared to PBS-injected paws. Unexpectedly, ablation of GSDMD failed to reduce joint swelling and osteolysis, suggesting that GSDMD was dispensable for the pathogenesis of STIA. GSDMD levels were also higher in MLI compared to sham-operated joints. Importantly, ablation of GSDMD attenuated MLI-associated cartilage degradation (p = 0.0097), synovitis (p = 0.014), subchondral bone sclerosis (p = 0.0006), and subchondral bone plate thickness (p = 0.0174) based on histopathological and µCT analyses. CONCLUSION: GSDMD plays a key role in the pathogenesis of PTOA, but not STIA, suggesting that its actions in experimental arthropathy are tissue context-specific.


Assuntos
Complexo Antígeno-Anticorpo , Artrite , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Ligação a Fosfato/genética , Ferimentos e Lesões/complicações , Animais , Artrite/etiologia , Autoanticorpos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Knockout , Microtomografia por Raio-X
13.
Sci Immunol ; 6(64): eabj3859, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34678046

RESUMO

NOD-like receptor (NLR), family pyrin domain containing 3 (NLRP3) assembles a protein complex known as the NLRP3 inflammasome upon sensing certain pathogen products or sterile danger signals. Gain-of-function mutations such as the D301N substitution in NLRP3, which cause its constitutive activation (NLRP3CA) also results in inflammasome assembly. This inflammasome processes pro­interleukin-1 ß (pro­IL-1ß) and pro­IL-18 into bioactive IL-1ß and IL-18, respectively, and cleaves gasdermin D (GSDMD). GSDMD amino-terminal fragments form plasma membrane pores that facilitate the secretion of IL-1ß and IL-18 and lead to the inflammatory cell death pyroptosis. Accordingly, GSDMD inactivation results in negligible spontaneous inflammation in various experimental models such as in Nlrp3CA/+ mice lacking GSDMD (Nlrp3CA/+;Gsdmd−/− mice). Here, we found that Nlrp3CA/+;Gsdmd−/− mice, when challenged with LPS or TNF-α, still secreted IL-1ß and IL-18, indicating inflammasome activation independent of GSDMD. Accordingly, Gsdmd−/− macrophages failed to secrete IL-1ß and undergo pyroptosis when briefly exposed to NLRP3 inflammasome activators but released these cytokines when persistently activated. Sustained NLRP3 inflammasome induced caspase-8/-3 and GSDME cleavage and IL-1ß maturation in vitro in Gsdmd−/− macrophages. Thus, a salvage inflammatory pathway involving caspase-8/-3­GSDME was activated after NLRP3 activation when the canonical NLRP3-GSDMD signaling was blocked. Consistent with genetic data, the active metabolite of FDA-approved disulfiram CuET, which inhibited GSDMD and GSDME cleavage in macrophages, reduced the severe inflammation and tissue damage that occurred in the Nlrp3CA/+ mice. Thus, NLRP3 inflammasome activation overwhelms the protection afforded by GSDMD deficiency, rewiring signaling cascades through mechanisms that include GSDME to propagate inflammation.


Assuntos
Inflamassomos/imunologia , Inflamação/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas de Ligação a Fosfato/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Animais , Células Cultivadas , Inflamação/patologia , Camundongos , Camundongos Congênicos , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Ligação a Fosfato/deficiência , Proteínas Citotóxicas Formadoras de Poros/deficiência
14.
FASEB J ; 35(9): e21837, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34383985

RESUMO

Overwhelming evidence indicates that excessive stimulation of innate immune receptors of the NOD-like receptor (NLR) family causes significant damage to multiple tissues, yet the role of these proteins in bone metabolism is not well known. Here, we studied the interaction between the NLRP3 and NLRC4 inflammasomes in bone homeostasis and disease. We found that loss of NLRP3 or NLRC4 inflammasome attenuated osteoclast differentiation in vitro. At the tissue level, lack of NLRP3, or NLRC4 to a lesser extent, resulted in higher baseline bone mass compared to wild-type (WT) mice, and conferred protection against LPS-induced inflammatory osteolysis. Bone mass accrual in mutant mice correlated with lower serum IL-1ß levels in vivo. Unexpectedly, the phenotype of Nlrp3-deficient mice was reversed upon loss of NLRC4 as bone mass was comparable between WT mice and Nlrp3;Nlrc4 knockout mice. Thus, although bone homeostasis is perturbed to various degrees by the lack of NLRP3 or NLRC4, this tissue appears to function normally upon compound loss of the inflammasomes assembled by these receptors.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Diferenciação Celular/fisiologia , Homeostase/fisiologia , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/metabolismo , Osteólise/metabolismo
15.
Methods Mol Biol ; 2366: 267-282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236644

RESUMO

The skeletal system is constantly undergoing turnover in order to create strong, organized structures, requiring the bone breakdown and building properties by osteoclasts and osteoblasts, respectively. However, in pathological disease states, excessive osteoclast activity can cause bone loss leading to increase in morbidity and mortality. Osteoclasts differentiate from macrophages in the presence of various factors. M-CSF is a cytokine that is required to maintain the survival of macrophages. However, RANKL is the critical factor required for differentiation of osteoclasts. RANKL is produced from a variety of different cell types such as osteoblasts and osteocytes. RANKL binds to RANK, its receptor, on the surface of osteoclast precursors, which activates various signaling pathways to drive the transcription and production of genes important for osteoclast formation. The major signaling pathway activated by RANKL-RANK interaction is the NF-κB pathway. The NF-κB pathway is the principle inflammatory response pathway activated by a variety of stimuli such as inflammatory cytokines, genotoxic stress, and other factors. This likely explains the finding that inflammatory diseases often present with some component of increased osteoclast formation and activity, driving bone loss. Determining the signaling mechanisms downstream of RANKL can provide valuable therapeutic targets for the treatment of bone loss in various disease states.


Assuntos
Transdução de Sinais , Diferenciação Celular , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Osteogênese , Ligante RANK/metabolismo , Fator 6 Associado a Receptor de TNF
16.
Bone Res ; 9(1): 29, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099632

RESUMO

Atrophic fracture nonunion poses a significant clinical problem with limited therapeutic interventions. In this study, we developed a unique nonunion model with high clinical relevance using serum transfer-induced rheumatoid arthritis (RA). Arthritic mice displayed fracture nonunion with the absence of fracture callus, diminished angiogenesis and fibrotic scar tissue formation leading to the failure of biomechanical properties, representing the major manifestations of atrophic nonunion in the clinic. Mechanistically, we demonstrated that the angiogenesis defect observed in RA mice was due to the downregulation of SPP1 and CXCL12 in chondrocytes, as evidenced by the restoration of angiogenesis upon SPP1 and CXCL12 treatment in vitro. In this regard, we developed a biodegradable scaffold loaded with SPP1 and CXCL12, which displayed a beneficial effect on angiogenesis and fracture repair in mice despite the presence of inflammation. Hence, these findings strongly suggest that the sustained release of SPP1 and CXCL12 represents an effective therapeutic approach to treat impaired angiogenesis and fracture nonunion under inflammatory conditions.

17.
Arthritis Rheumatol ; 73(12): 2249-2260, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33982891

RESUMO

OBJECTIVE: Recent evidence delineates an emerging role of periostin in osteoarthritis (OA), since its expression after knee injury is detrimental to the articular cartilage. We undertook this study to examine whether intraarticular (IA) knockdown of periostin would ameliorate posttraumatic OA in a murine model. METHODS: Posttraumatic OA was induced in 10-week-old male C57BL/6J mice (n = 24) by destabilization of the medial meniscus (DMM), and mice were analyzed 8 weeks after surgery. Periostin expression was inhibited by small interfering RNA (siRNA) delivered IA using a novel peptide-nucleotide polyplex. Following histologic assessment of the mouse knee cartilage, the extent of cartilage degeneration was determined using Osteoarthritis Research Society International (OARSI) cartilage damage score, and severity of synovitis was also assessed. Bone changes were measured using micro-computed tomography. The effect and mechanism of periostin silencing were investigated in human chondrocytes that had been stimulated with interleukin-1ß (IL-1ß) with or without the IκB kinase 2 inhibitor SC-514. RESULTS: Periostin expression in mice with posttraumatic OA was significantly abolished using IA delivery of a peptide-siRNA nanoplatform. OARSI cartilage damage scores were significantly lower in mice receiving periostin siRNA (mean ± SEM 10.94 ± 0.66) compared to untreated mice (22.38 ± 1.30) and mice treated with scrambled siRNA (22.69 ± 0.87) (each P = 0.002). No differences in the severity of synovitis were observed. Subchondral bone sclerosis, bone volume/total volume, volumetric bone mineral density, and heterotopic ossification were significantly lower in mice that had received periostin siRNA treatment. Immunostaining of cartilage revealed that periostin knockdown reduced the intensity of DMM-induced matrix metalloproteinase 13 (MMP-13) expression and also diminished the phosphorylation of p65 and immunoreactivity of the aggrecan neoepitope DIPEN. Periostin knockdown also suppressed IL-1ß-induced MMP-13 and ADAMTS-4 expression in chondrocytes. Mechanistically, periostin-induced MMP-13 expression was abrogated by SC-514, demonstrating a link between periostin and NF-κB. CONCLUSION: IA delivery of the periostin-siRNA nanocomplex represents a promising clinical approach to mitigate the severity of joint degeneration in OA. Our findings may thus provide an unequivocal scientific rationale for longitudinal studies of this approach. Utilizing a cartilage-specific gene-knockout strategy will further illuminate the functional role of periostin in OA.


Assuntos
Cartilagem Articular/metabolismo , Moléculas de Adesão Celular/genética , Articulação do Joelho/metabolismo , Osteoartrite/metabolismo , Proteína ADAMTS4/metabolismo , Animais , Densidade Óssea/fisiologia , Cartilagem Articular/diagnóstico por imagem , Moléculas de Adesão Celular/metabolismo , Condrócitos/metabolismo , Inativação Gênica , Articulação do Joelho/diagnóstico por imagem , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , NF-kappa B/metabolismo , Nanopartículas , Osteoartrite/diagnóstico por imagem , Osteoartrite/genética , RNA Interferente Pequeno , Sinovite/diagnóstico por imagem , Sinovite/genética , Sinovite/metabolismo
18.
Am J Sports Med ; 49(3): 780-789, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33507808

RESUMO

BACKGROUND: More than 450,000 rotator cuff repairs are performed annually, yet healing of tendon to bone often fails. This failure is rooted in the fibrovascular healing response, which does not regenerate the native attachment site. Better healing outcomes may be achieved by targeting inflammation during the early period after repair. Rather than broad inhibition of inflammation, which may impair healing, the current study utilized a molecularly targeted approach to suppress IKKß, shutting down only the inflammatory arm of the nuclear factor κB (NF-κB) signaling pathway. PURPOSE: To evaluate the therapeutic potential of IKKß inhibition in a clinically relevant model of rat rotator cuff repair. STUDY DESIGN: Controlled laboratory study. METHODS: After validating the efficacy of the IKKß inhibitor in vitro, it was administered orally once a day for 7 days after surgery in a rat rotator cuff repair model. The effect of treatment on reducing inflammation and improving repair quality was evaluated after 3 days and 2, 4, and 8 weeks of healing, using gene expression, biomechanics, bone morphometry, and histology. RESULTS: Inhibition of IKKß attenuated cytokine and chemokine production in vitro, demonstrating the potential for this inhibitor to reduce inflammation in vivo. Oral treatment with IKKß inhibitor reduced NF-κB target gene expression by up to 80% compared with a nontreated group at day 3, with a subset of these genes suppressed through 14 days. Furthermore, the IKKß inhibitor led to enhanced tenogenesis and extracellular matrix production, as demonstrated by gene expression and histological analyses. At 4 weeks, inhibitor treatment led to increased toughness, no effects on failure load and strength, and decreases in stiffness and modulus when compared with vehicle control. At 8 weeks, IKKß inhibitor treatment led to increased toughness, failure load, and strength compared with control animals. IKKß inhibitor treatment prevented the bone loss near the tendon attachment that occurred in repairs in control. CONCLUSION: Pharmacological inhibition of IKKß successfully suppressed excessive inflammation and enhanced tendon-to-bone healing after rotator cuff repair in a rat model. CLINICAL RELEVANCE: The NF-κB pathway is a promising target for enhancing outcomes after rotator cuff repair.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Quinase I-kappa B , Ratos , Manguito Rotador/cirurgia , Tendões , Cicatrização
19.
J Bone Miner Res ; 36(2): 357-368, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33053220

RESUMO

Legg-Calvé-Perthes disease (LCPD) is a juvenile form of ischemic femoral head osteonecrosis, which produces chronic hip synovitis, permanent femoral head deformity, and premature osteoarthritis. Currently, there is no medical therapy for LCPD. Interleukin-6 (IL-6) is significantly elevated in the synovial fluid of patients with LCPD. We hypothesize that IL-6 elevation promotes chronic hip synovitis and impairs bone healing after ischemic osteonecrosis. We set out to test if anti-IL-6 therapy using tocilizumab can decrease hip synovitis and improve bone healing in the piglet model of LCPD. Fourteen piglets were surgically induced with ischemic osteonecrosis and assigned to two groups: the no treatment group (n = 7) and the tocilizumab group (15 to 20 mg/kg, biweekly intravenous injection, n = 7). All animals were euthanized 8 weeks after the induction of osteonecrosis. Hip synovium and femoral heads were assessed for hip synovitis and bone healing using histology, micro-CT, and histomorphometry. The mean hip synovitis score and the number of synovial macrophages and vessels were significantly lower in the tocilizumab group compared with the no treatment group (p < .0001, p = .01, and p < .01, respectively). Micro-CT analysis of the femoral heads showed a significantly higher bone volume in the tocilizumab group compared with the no treatment group (p = .02). The histologic assessment revealed a significantly lower number of osteoclasts per bone surface (p < .001) in the tocilizumab group compared with the no treatment group. Moreover, fluorochrome labeling showed a significantly higher percent of mineralizing bone surface (p < .01), bone formation rate per bone surface (p < .01), and mineral apposition rate (p = .04) in the tocilizumab group. Taken together, tocilizumab therapy decreased hip synovitis and osteoclastic bone resorption and increased new bone formation after ischemic osteonecrosis. This study provides preclinical evidence that tocilizumab decreases synovitis and improves bone healing in a large animal model of LCPD. © 2020 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Reabsorção Óssea , Doença de Legg-Calve-Perthes , Osteonecrose , Sinovite , Animais , Reabsorção Óssea/tratamento farmacológico , Cabeça do Fêmur/diagnóstico por imagem , Humanos , Osteogênese , Suínos
20.
PLoS Biol ; 18(8): e3000807, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760056

RESUMO

Radiotherapy is a commonly used conditioning regimen for bone marrow transplantation (BMT). Cytotoxicity limits the use of this life-saving therapy, but the underlying mechanisms remain poorly defined. Here, we use the syngeneic mouse BMT model to test the hypothesis that lethal radiation damages tissues, thereby unleashing signals that indiscriminately activate the inflammasome pathways in host and transplanted cells. We find that a clinically relevant high dose of radiation causes severe damage to bones and the spleen through mechanisms involving the NLRP3 and AIM2 inflammasomes but not the NLRC4 inflammasome. Downstream, we demonstrate that gasdermin D (GSDMD), the common effector of the inflammasomes, is also activated by radiation. Remarkably, protection against the injury induced by deadly ionizing radiation occurs only when NLRP3, AIM2, or GSDMD is lost simultaneously in both the donor and host cell compartments. Thus, this study reveals a continuum of the actions of lethal radiation relayed by the inflammasome-GSDMD axis, initially affecting recipient cells and ultimately harming transplanted cells as they grow in the severely injured and toxic environment. This study also suggests that therapeutic targeting of inflammasome-GSDMD signaling has the potential to prevent the collateral effects of intense radiation regimens.


Assuntos
Células da Medula Óssea/efeitos da radiação , Transplante de Medula Óssea , Proteínas de Ligação a DNA/genética , Inflamassomos/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Ligação a Fosfato/genética , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proteínas de Ligação a DNA/deficiência , Feminino , Fêmur/citologia , Fêmur/metabolismo , Regulação da Expressão Gênica , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteínas de Ligação a Fosfato/deficiência , Piroptose/genética , Piroptose/efeitos da radiação , Transdução de Sinais , Baço/metabolismo , Baço/patologia , Baço/efeitos da radiação , Transplante Isogênico , Irradiação Corporal Total , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...